
LSF0108-Q1

ZHCSF27E - MAY 2016 - REVISED NOVEMBER 2022

LSF0108-Q1 汽车类 8 通道多电压电平转换器

1 特性

- 具有符合 AEC-Q100 标准的下列特性:
 - 器件 HBM ESD 分类等级 2000V
 - 器件 CDM ESD 分类等级 1000V
- 采用具有可湿性侧面的 VQFN (RKS) 封装
- 在无方向引脚的情况下提供双向电压转换
- 在不超过 30pF 的容性负载条件下支持最高达 100MHz 的上行转换和超过 100MHz 的下行转换, 在 50pF 的容性负载条件下支持高达 40MHz 的上 行/下行转换
- 支持热插入
- 可实现以下电压之间的双向电压电平转换
 - 0.95V ↔ 1.8V \ 2.5V \ 3.3V \ 5V
 - 1.2V ↔ 1.8V \ 2.5V \ 3.3V \ 5V
 - 1.8V ↔ 2.5V \ 3.3V \ 5V
 - 2.5V ↔ 3.3V \ 5V
 - 3.3V ↔ 5V
- 低待机电流
- 支持 TTL 的 5V 耐受 I/O 端口
- 低导通电阻,可减少信号失真
- 针对 EN 为低电平的高阻抗 I/O 引脚
- 采用直通引脚排列来简化 PCB 布线
- 闩锁性能超过 100 mA, 符合 JESD 17 规范
- 40°C 至 +125°C 工作温度范围

功能方框图

2 应用

- GPIO、MDIO、PMBus、SMBus、SDIO、 UART、I²C 和电信基础设施中的其他接口
- 信息娱乐系统与仪表组
- 车身电子装置和照明
- 混合动力、电动和动力总成系统
- 被动安全
- **ADAS**

3 说明

- 在 ≤ 30pF 的容性负载条件下支持最高达 100MHz 的上行转换和超过 100MHz 的下行转换, 在 50pF 的容性负载条件下支持高达 40MHz 的上行/下行转
 - 允许 LSF 系列支持更多的消费类或电信接口 (MDIO或SDIO)
- 双向电压转换(不使用 DIR 引脚):
 - 更大限度地减少开发双向接口 (PMBus、I²C 或 SMbus) 电压转换的系统工作量
- IO 端口可耐受 5V 电压且支持 125°C 高温:
 - LSF 系列可耐受 5V 电压且支持 125°C 高温, 能够灵活兼容工业和电信应用中的 TTL 电平。
- 通道的特定转换:
 - LSF 系列能够为每条通道设置不同电压转换电

封装信息(1)

	>1 ~ IH . L.	
器件型号	封装	封装尺寸 (NOM)
	PW (TSSOP , 20)	4.40mm × 6.50mm
LSF0108-Q1	RKS (VQFN , 20)	4.50mm × 2.50mm

- 如需了解所有可用封装,请参阅数据表末尾的可订购产品附 录。
- 预发布封装 (2)

Table of Contents

1 特性	1	8 Detailed Description	
2 应用		8.1 Overview	
- <u>一</u> , 1 3 说明		8.2 Functional Block Diagram	
4 Revision History		8.3 Feature Description	10
5 Pin Configuration and Functions		8.4 Device Functional Modes	
6 Specifications		9 Applications and Implementation	13
6.1 Absolute Maximum Ratings		9.1 Application Information	
6.2 ESD Ratings		9.2 Typical Application	
6.3 Recommended Operating Conditions		10 Power Supply Recommendations	<mark>2</mark>
6.4 Thermal Information		11 Layout	<mark>2</mark>
6.5 Electrical Characteristics		11.1 Layout Guidelines	
6.6 Switching Characteristics (Translating Down),		11.2 Layout Example	
V _{GATE} = 3.3 V	6	12 Device and Documentation Support	
6.7 Switching Characteristics (Translating Down),		12.1 接收文档更新通知	22
V _{GATE} = 2.5 V	6	12.2 支持资源	22
6.8 Switching Characteristics (Translating Up),		12.3 Trademarks	22
V _{GATE} = 3.3 V	7	12.4 Electrostatic Discharge Caution	22
6.9 Switching Characteristics (Translating Up),		12.5 术语表	2
V _{GATE} = 2.5 V	7	13 Mechanical, Packaging, and Orderable	
6.10 Typical Characteristics		Information	<mark>2</mark> 2
7 Parameter Measurement Information			

4 Revision History

注:以前版本的页码可能与当前版本的页码不同

Changes from Revision D (April 2021) to Revision E (November 2022)	Page
• 添加了自动双向电压转换、输出使能、可湿性侧面、上行和下行转换、偏置电路、混合模式电压转换、	
<i>转换</i> 和 <i>Vref_B < Vref_A + 0.8V 的电压转换</i> 部分	
Added the RKS package to the data sheet	
Updated the Overview section	9
Updated the Device Functional Modes section	11
Updated the Application Information section	13
Updated the Enable, Disable, and Reference Voltage Guidelines section	14
Updated the Pull-Up Resistor Sizing section	15
Changes from Revision C (July 2018) to Revision D (April 2021)	Page
• 更新了整个文档中的表格、图和交叉参考的编号格式	1
Updated the Bidirectional Transation section to include inclusive terminology	
Changes from Revision B (June 2016) to Revision C (July 2018)	Page
Changed Thermal Information values	5
Changes from Revision A (May 2016) to Revision B (June 2016)	Page
• 删除了特性中的"ESD性能测试符合 JESD 22 标准"	1
• 更新了 <i>特性</i> 和 <i>应用</i>	
• 添加了 <i>接收文档更新通知</i> 部分	
• Deleted R _{θ JA} from <i>Absolute Maximum Ratings</i> table	
Changed ANSI/ESDA/JEDEC JS-001 to AEC-Q100 - 002 and JEDEC specification JESD22- V C101	
AEC-100-011 in ESD Ratings	
Updated Short Trace Layout image	
Opacioa Onort nace Layout image	21

Changes from Revision	* (May 2016) to	o Revision A	(May 2016)
-----------------------	-----------------	--------------	------------

Page

• 将"产品预发布"更改为"量产数据"......1

5 Pin Configuration and Functions

All packages are on the same relative scale

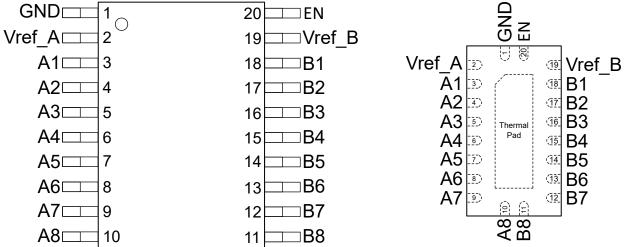


图 5-1. PW Package, 20-Pin TSSOP (Transparent Top View)

图 5-2. RKS (Preview) Package, 20-Pin VQFN (Transparent Top View)

表 5-1. Pin Functions

PIN TYPE(1)		TVDE(1)	DESCRIPTION
NAME	NO.	ITPE	DESCRIPTION
A1	3	I/O	Data port
A2	4	I/O	Data port
A3	5	I/O	Data port
A4	6	I/O	Data port
A5	7	I/O	Data port
A6	8	I/O	Data port
A7	9	I/O	Data port
A8	10	I/O	Data port
B1	18	I/O	Data port
B2	17	I/O	Data port
В3	16	I/O	Data port
B4	15	I/O	Data port
B5	14	I/O	Data port
B6	13	I/O	Data port
B7	12	I/O	Data port
B8	11	I/O	Data port
EN	20	I	Switch enable input; connect to Vref_B and pull-up through a high resistor (200 k Ω).
GND	1	_	Ground
Vref_A	2	_	Reference supply voltage A. For more information, see <i>Application and Implementation</i> section.
Vref_B	19	_	Reference supply voltage B. For more information, see <i>Application and Implementation</i> section.

(1) I = input, O = output

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature (unless otherwise noted)(1)

				MIN	MAX	UNIT
VI	Input voltage ⁽²⁾			- 0.5	7	V
V _{I/O}	Input/output voltage ⁽²⁾			- 0.5	7	V
	Continuous channel current				128	mA
I _{IK}	Input clamp current	/	′ ₁ < 0		- 50	mA
TJ	Max Junction temperature	'			150	°C
T _{stg}	Storage temperature			- 65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
V Floatroatatic discharge	Human-body model (HBM), per AEC Q100-002 ⁽¹⁾	±2000	V	
(ESD)	V _(ESD) Electrostatic discharge	Charged-device model (CDM), per AEC Q100-011	±1000	

⁽¹⁾ AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V _{I/O}	Input/output voltage	0	5	V
V _{ref_A/B/EN}	Reference voltage	0	5	V
I _{PASS}	Pass transistor current		64	mA
T _A	Operating free-air temperature	- 40	125	°C

6.4 Thermal Information

		LSF01		
	THERMAL METRIC(1)	PW (TSSOP)	WRKS (VQFN)	UNIT
		20 PINS	20 PINS	
R ₀ JA	Junction-to-ambient thermal resistance	110.7	TBD	°C/W
R _{θ JC(top)}	Junction-to-case (top) thermal resistance	45.4	TBD	°C/W
R ₀ JB	Junction-to-board thermal resistance	62.6	TBD	°C/W
Ψ ЈТ	Junction-to-top characterization parameter	6.6	TBD	°C/W
ψ ЈВ	Junction-to-board characterization parameter	61.9	TBD	°C/W
R _{θ JC(bot)}	Junction-to-case (bottom) thermal resistance	n/a	TBD	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Copyright © 2022 Texas Instruments Incorporated

Submit Document Feedback

⁽²⁾ The input and input/output negative-voltage ratings may be exceeded if the input and input/output clamp-current ratings are observed.

6.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TI	EST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
V _{IK}	I _I = - 18 mA,	V _{EN} = 0				- 1.2	V
I _{IH}	V _I = 5 V	V _{EN} = 0				5	μΑ
I _{CC}	$V_{ref_B} = V_{EN} = 5$.5 V, V _{ref_A} = 4.5	$V, I_O = 0, V_I = V_{CC} \text{ or GND}$		6		μΑ
C _{I(ref_A/B/EN)}	V _I = 3 V or 0				11		pF
C _{io(off)}	V _O = 3 V or 0,	V _{EN} = 0			4	6	pF
C _{io(on)}	V _O = 3 V or 0,	V _{EN} = 3 V			10.5	12.5	pF
	V ₁ = 0,	I _O = 64 mA	$V_{ref_A} = 3.3 \text{ V}; V_{ref_B} = V_{EN} = 5 \text{ V}$		8		
			$V_{ref_A} = 1.8 \text{ V}; V_{ref_B} = V_{EN} = 5 \text{ V}$		9	Ω	
			$V_{ref_A} = 1.0 \text{ V}; V_{ref_B} = V_{EN} = 5 \text{ V}$		10		
	V ₁ = 0,	I _O = 32 mA	$V_{ref_A} = 1.8 \text{ V}; V_{ref_B} = V_{EN} = 5 \text{ V}$		10		Ω
r _{on} ⁽²⁾	V = 0,	10 - 32 111A	$V_{ref_A} = 2.5 \text{ V}; V_{ref_B} = V_{EN} = 5 \text{ V}$		15		52
	V _I = 1.8 V,	I _O = 15 mA	$V_{ref_A} = 3.3 \text{ V}; V_{ref_B} = V_{EN} = 5 \text{ V}$		9		Ω
	V _I = 1.0 V,	I _O = 10 mA	$V_{ref_A} = 1.8 \text{ V}; V_{ref_B} = V_{EN} = 3.3 \text{ V}$		18		Ω
	V _I = 0 V,	I _O = 10 mA	V _{ref_A} = 1.0 V; V _{ref_B} = V _{EN} = 3.3 V		20		Ω
	V _I = 0 V,	I _O = 10 mA	V _{ref_A} = 1.0 V; V _{ref_B} = V _{EN} = 1.8 V		30		Ω

⁽¹⁾ All typical values are at $T_A = 25$ °C.

6.6 Switching Characteristics (Translating Down), V_{GATE} = 3.3 V

over recommended operating free-air temperature range, $V_{GATE} = 3.3 \text{ V}$, $V_{IH} = 3.3 \text{ V}$, $V_{IL} = 0$, and $V_{M} = 1.15 \text{ V}$ (unless otherwise noted) (see $\boxed{8}$ 7-1)

PARAMETER	FROM (INPUT)	то (оитрит)	C _L = 50 pF		C _L = 30 pF		C _L = 15 pF		UNIT
PARAMETER			TYP	MAX	TYP	MAX	TYP	MAX	UNII
t _{PLH}	A or B	B or A	1.9		1.4		0.75		ns
t _{PHL}			2		1.5		0.85		115

6.7 Switching Characteristics (Translating Down), V_{GATE} = 2.5 V

over recommended operating free-air temperature range, V_{GATE} = 2.5 V, V_{IH} = 2.5 V, V_{IL} = 0, and V_{M} = 0.75 V (unless otherwise noted) (see $\boxed{8}$ 7-1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	C _L = 50 pF		C _L = 30 pF		C _L = 15 pF		UNIT
PARAMETER	PROM (INPUT) TO (OUT	10 (0011-01)	TYP N	MAX	TYP	MAX	TYP	MAX	ONIT
t _{PLH}	A or B	A or B B or A	2		1.45		0.8		ns
t _{PHL}		BOIA	2.1		1.55		0.9		115

Product Folder Links: LSF0108-Q1

⁽²⁾ Measured by the voltage drop between the A and B pins at the indicated current through the switch. On-state resistance is determined by the lowest voltage of the two (A or B) pins.

6.8 Switching Characteristics (Translating Up), $V_{GATE} = 3.3 V$

over recommended operating free-air temperature range, V_{GATE} = 3.3 V, V_{IH} = 2.3 V, V_{IL} = 0, V_{T} = 3.3 V, V_{M} = 1.15 V and R_{L} = 300 (unless otherwise noted) (see $\boxed{8}$ 7-1)

PARAMETER	FROM (INPUT) TO (OUTPUT)		C _L = 50	pF	C _L = 30	pF	C _L = 15	pF	UNIT
PARAMETER	FROW (INFOT)	10 (0011-01)	TYP	MAX	TYP	MAX	TYP	MAX	ONII
t _{PLH}	A or B	B or A	2.1		1.55		0.9		ne
t _{PHL}	AOIB	BOIA	2.2		1.65		1		ns

6.9 Switching Characteristics (Translating Up), $V_{GATE} = 2.5 V$

over recommended operating free-air temperature range, V_{GATE} = 2.5 V, V_{IH} = 1.5 V, V_{IL} = 0, V_{T} = 2.5 V, V_{M} = 0.75 V and R_{L} = 300 (unless otherwise noted) (see $\boxed{8}$ 7-1)

PARAMETER	FROM (INPUT)	FROM (INPUT) TO (OUTPUT) $C_L = 50 \text{ pF}$ $C_L = 30 \text{ pF}$		C _L = 15	UNIT				
PARAMETER	ER FROM (INPUT)	10 (001701)	TYP	MAX	TYP	MAX	TYP	MAX	ONII
t _{PLH}	A or B	B or A	1.8		1.35		0.8		- ns
t _{PHL}	A or B		1.9		1.45		0.9		

6.10 Typical Characteristics

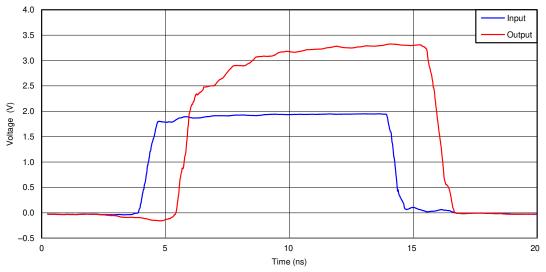
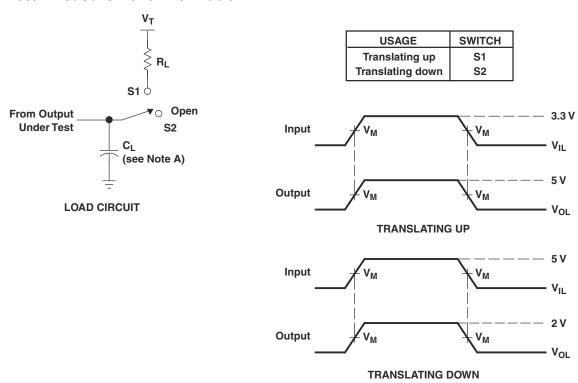



图 6-1. Signal Integrity (1.8 to 3.3 V Translation Up at 50 MHz)

C005

7 Parameter Measurement Information

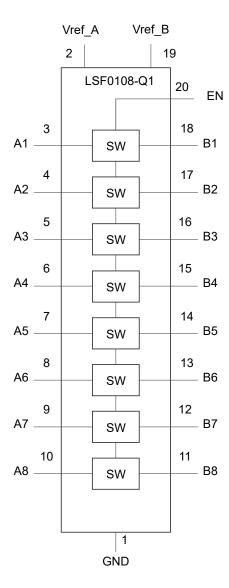
NOTES: A. C_L includes probe and jig capacitance.

B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq 2$ ns.

C. The outputs are measured one at a time, with one transition per measurement.

图 7-1. Load Circuit for Outputs

Submit Document Feedback


Copyright © 2022 Texas Instruments Incorporated

8 Detailed Description

8.1 Overview

The LSF0108-Q1 can be used in level-translation applications for interfacing devices or systems operating at different supply voltages. The LSF0108-Q1 is ideal for use in applications where an open-drain driver is connected to the data I/Os. LSF0108-Q1 can achieve 100 MHz with appropriate pull-up resistors and layout. The LSF0108-Q1 may also be used in applications where a push-pull driver is connected to the data I/Os. For an overview of device setup and operation, see *The Logic Minute* training series on *Understanding the LSF Family of Bidirectional, Multi-Voltage Level Translators*.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Auto Bidirectional Voltage Translation

All devices in the LSF family are auto bidirectional voltage level translators that are operational from 0.95 V to 4.5 V on the Vref_A supply and from 1.8 V to 5.5 V on the Vref_B supply. This allows bidirectional voltage translation between 0.95 V and 5.5 V without the need for a direction pin in open-drain or push-pull applications. The LSF family supports level translation applications with transmission speeds greater than 100 Mbps for open-drain systems using a 30-pF capacitance and 250- Ω pullup resistor. Both the output driver of the controller and the peripheral device output can be push-pull or open-drain (pull-up resistors may be required). During operation of the device, the B-side is often referred to as the high side while the A-side is referred to as the low side.

8.3.2 Output Enable

To enable the I/O pins, the EN input should be tied directly to Vref_B during operation and both pins must be pulled up to the HIGH side (Vpu or VCCB) through a pull-up resistor (typically 200 k Ω). To ensure the high impedance state during power-up, power-down, or during operation, the EN pin must be LOW. The EN pin should always be tied directly to the Vref_B pin and is recommended to be disabled by an open-drain driver without a pullup resistor. This allows Vref_B to regulate the EN input and bias the channels for proper translation. A filter capacitor on Vref_B is recommended for a stable supply at the device.

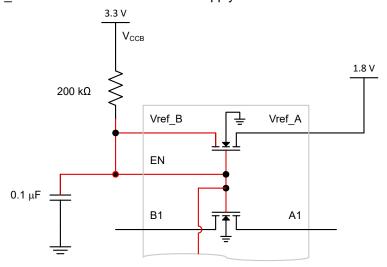
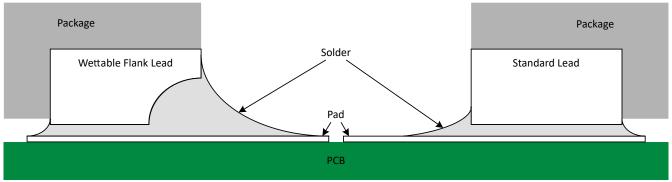


图 8-1. EN Pin Tied to Vref_B Directly and to VCCB Through a Pull-Up Resistor

The supply voltage of open drain I/O devices can be completely different from the supplies used for the LSF and has no impact on the operation. For additional details on how to use the enable pin, see the *Using the Enable Pin with the LSF Family video*.

表 8-1. EN Pin Function Table

INPUT EN ⁽¹⁾ PIN	Data Port State
Tied directly to Vref_B	An = Bn
L	Hi-Z


(1) EN is controlled by V_{ref_B} logic levels.

8.3.3 Wettable Flanks

This device includes wettable flanks for at least one package. See the Features section on the front page of the data sheet for which packages include this feature.

Wettable flanks help improve side wetting after soldering which makes QFN packages easier to inspect with automatic optical inspection (AOI). A wettable flank can be dimpled or step-cut to provide additional surface area for solder adhesion which assists in reliably creating a side fillet as shown in the figure. Please see the mechanical drawing for additional details.

图 8-2. Simplified Cutaway View of Wettable-Flank QFN Package and Standard QFN Package After Soldering

8.4 Device Functional Modes

For each channel (n), when either the An or Bn port is LOW, the switch provides a low impedance path between the An and Bn ports; the corresponding Bn or An port will be pulled LOW. The low R_{ON} of the switch allows connections to be made with minimal propagation delay and signal distortion.

表 8-1 provides a summary of device operation. For additional details on the functional operation of the LSF family of devices, see the *Down Translation with the LSF Family* and *Up Translation with the LSF Family* videos.

		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,
Signal Direction ⁽¹⁾	Input State	Switch State	Functionality
B to A (Down Translation)	B = LOW	ON (Low Impedance)	A-side voltage is pulled low through the switch to the B-side voltage
B to A (Down Translation)	B = HIGH	OFF (High Impedance)	A-side voltage is clamped at Vref_A ⁽²⁾
A to B (Up Translation)	A = LOW	ON (Low Impedance)	B-side voltage is pulled low through the switch to the A-side voltage
A to b (op translation)	A = HIGH	OFF (High Impedance)	B-side voltage is clamped at Vref_A and then pulled up to the Vpu# supply voltage

表 8-2. Device Functionality

- (1) The downstream channel should not be actively driven through a low impedance driver, or else bus contention may occur.
- (2) The A-side can have a pullup to Vref_A for additional current drive capability or may also be pulled above Vref_A with a pullup resistor. Specifications in the *Recommended Operating Conditions* section should always be followed.

8.4.1 Up and Down Translation

Up Translation: When the signal is driven from A to B and the An port is HIGH, the switch will be OFF and the Bn port will then be driven to a voltage higher than $Vref_A$ by the pullup resistor that is connected to the pull-up supply voltage. This functionality allows seamless translation between the higher and lower voltages selected by the user, without the need for directional control. Pull-up resistors are always required on the high side, and pull-ups are only required on the low side if the output of the low side device is open drain or its input has a leakage greater than 1 μ A.

Copyright © 2022 Texas Instruments Incorporated

Submit Document Feedback

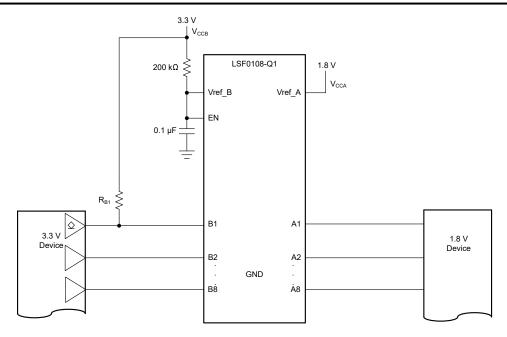


图 8-3. Up Translation Example Schematic with Push-Pull and Open Drain Configuration

Up translation with the LSF requires attention to two important factors: maximum data rate and sink current. Maximum data rate is directly related to the rising edge of the output signal. Sink current depends on supply values and the chosen pull-up resistor values. 方程式 1 shows the maximum data rate formula, and 方程式 2 presents the maximum sink current formula, both of which are estimations. A low RC value is needed to reach high speeds, which also require strong drivers. For estimated data rate and sink current calculations based on circuit component, see the *Up Translation with the LSF Family* video.

$$\frac{1}{3 \times 2R_{B1}C_{B1}} = \frac{1}{6R_{B1}C_{B1}} \left(\frac{bits}{second} \right) \tag{1}$$

$$I_{OL} \cong \frac{V_{CCA}}{R_{A1}} + \frac{V_{CCB}}{R_{B1}} \left(A \right) \tag{2}$$

Down Translation: When the signal is being driven HIGH from the Bn port to An port, the switch will be OFF, clamping the voltage on the An port to the voltage set by Vref_A. A pull-up resistor can be added on either side of the device. There are special circumstances that allow the removal of one or both of the pull-up resistors. If the signal is always going to be down translated from a push-pull transmitter, then the resistor on the B-side can be removed. If the leakage current into the receiver on the A-side is less than 1 μA, then the resistor on the A-side can also be removed. This arrangement, with no external pull-up resistors, can be used when down translating from a push-pull output to a low-leakage input. For an open drain transmitter, the pull-up resistor on the B-side is necessary because an open drain output cannot drive high by itself. $\frac{1}{2}$ 9-2 lists a summary of device operation. For additional details on the functional operation of the LSF family of devices, see the *Up Translation with the LSF Family* and *Down Translation with the LSF Family* videos.

9 Applications and Implementation

备注

以下应用部分中的信息不属于 TI 器件规格的范围, TI 不担保其准确性和完整性。TI 的客户应负责确定器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。

9.1 Application Information

The LSF0108-Q1 device can perform voltage translation for open-drain or push-pull interface. 表 9-1 provides some consumer or telecom interfaces as reference to the different channel numbers that are supported by the LSF0108-Q1.

表 9-1. Voltage Translator for Consumer or Telecom Interface

Part Name	Channel Number	Interface
LSF0108-Q1	8	GPIO, MDIO, SDIO, SVID, UART, SMBus, PMBus, I ² C, and SPI

Some important reminders regarding the LSF family of devices are as follows:

- LSF devices are switch-based, not buffer-based (see the TXB family for buffer-based devices)
- Specific data rates cannot be calculated by using 1/Tpd

9.2 Typical Application

9.2.1 I²C PMBus, SMBus, GPIO

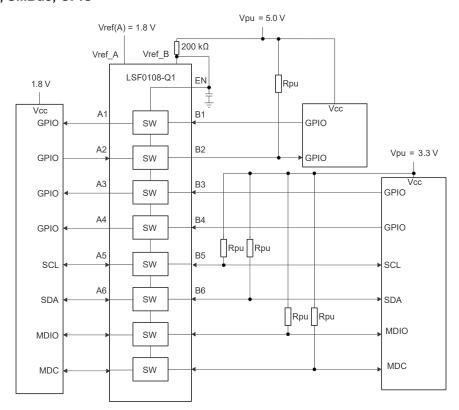


图 9-1. Bidirectional Translation to Multiple Voltage Levels

9.2.1.1 Design Requirements

9.2.1.1.1 Enable, Disable, and Reference Voltage Guidelines

As shown in $\[\]$ 9-1, the A1 and A2 channels have a maximum output voltage equal to Vref_A, and the B1 and B2 channels have a maximum output voltage equal to Vpu when Vref_B is connected through a 200-k Ω resistor to a 3.3-V Vpu power supply and Vref_A is set 1.8 V.

The LSF0108-Q1 has an EN input that is used to disable the device by setting EN LOW, which places all I/Os in the high-impedance state. The power consumption is very low because LSF0108-Q1 is a switch-type voltage translator. It is recommended to always enable LSF0108-Q1 for bidirectional application (I²C, SMBus, PMBus, or MDIO).

表 9-2. Application Operating Condition

	PARAMETER	MIN	TYP MAX	UNIT
Vref_A ⁽¹⁾	reference voltage (A)	0.95	4.5	V
Vref_B	reference voltage (B)	Vref_A + 0.8	5.5	V
V _{I(EN)}	input voltage on EN pin	Vref_A + 0.8	5.5	V
Vpu	pull-up supply voltage	0	Vref_B	V

(1) Vref_A have to be the lowest voltage level across all of inputs and outputs.

备注

The 200 k Ω , pull-up resistor is required to allow Vref B to regulate the EN input.

A filter capacitor on Vref_B is recommended. Also Vref_B and $V_{I(EN)}$ are recommended to be at 1.0 V higher than Vref_A for best signal integrity.

9.2.1.1.2 Bias Circuitry

For proper operation, VCCA must always be at least 0.8 V less than VCCB (VCCA + 0.8 \leq VCCB). The 200 k Ω pull-up resistor is required to allow Vref_B to regulate the EN input and properly bias the device for translation. A 0.1 μ F capacitor is recommended for providing a path from Vref_B to ground for high frequency noise. Vref_B and VI (EN) are recommended to be 1.0 V higher than Vref_A for best signal integrity.

Attempting to drive the EN pin directly with a push-pull output device is a very common design error with the LSF01 series of devices. It is also very important to note that current does flow into the A-side voltage supply during normal operation. Not all voltage sources can sink current, so be sure that applicable designs can handle this current. For more design details, see the *Understanding the Bias Circuit for the LSF Family* video.

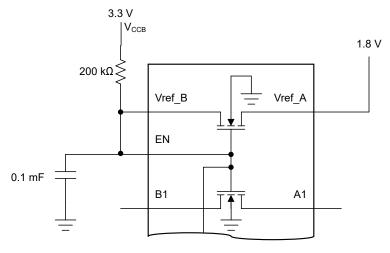


图 9-2. Bias Circuitry Inside the LSF0108-Q1 Devices

Submit Document Feedback

9.2.1.2 Detailed Design Procedure

9.2.1.2.1 Bidirectional Translation

For the bidirectional clamping configuration (higher voltage to lower voltage or lower voltage to higher voltage), the EN input must be connected to Vref_B and both pins pulled to HIGH side Vpu through a pull-up resistor (typically 200 k Ω). This allows Vref_B to regulate the EN input. A filter capacitor on Vref_B is recommended. The controller output driver can be push-pull or open-drain (pull-up resistors may be required) and the peripheral device output can be push-pull or open-drain (pull-up resistors are required to pull the Bn outputs to Vpu).

各注

If either output is push-pull, then data must be unidirectional or the outputs must be tri-state and be controlled by some direction-control mechanism to prevent HIGH-to-LOW contentions in either direction. If both outputs are open-drain, then no direction control is needed.

 $\[\]$ 9-1 shows how the reference supply voltage (Vref_A) is connected to the processor core power supply voltage. When Vref_B is connected through a 200 k Ω resistor to a 3.3 V Vpu power supply, and Vref_A is set 1 V. The output of A3 and B4 has a maximum output voltage equal to Vref_A, and the bidirectional interface (Ch1/2, MDIO) has a maximum output voltage equal to Vpu.

9.2.1.2.2 Pull-Up Resistor Sizing

The pull-up resistor value needs to limit the current through the pass transistor when it is in the ON state to about 15 mA. This ensures a voltage drop of 260 mV to 350 mV to have a valid LOW signal on the downstream channel. If the current through the pass transistor is higher than 15 mA, the voltage drop is also higher in the ON state. To set the current through each pass transistor at 15 mA, calculate the pull-up resistor value using the following equation:

$$Rpu = \frac{(Vpu - 0.35 V)}{0.015 A} \tag{3}$$

表 9-3 summarizes resistor values, reference voltages, and currents at 8 mA, 5 mA, and 3 mA. The resistor value shown in the +10% column (or a larger value) should be used to ensure that the voltage drop across the transistor is 350 mV or less. The external driver must be able to sink the total current from the resistors on both sides of the LSF family device at 0.175 V, although the 15 mA applies only to current flowing through the LSF family device. The device driving the low state at 0.175 V must sink current from one or more of the pull-up resistors and maintain VOL. A decrease in resistance will increase current, and thus result in increased VOL.

表 9-3. Pull-Up Resistor Values

V _{DPU} ⁽¹⁾ ⁽²⁾	8 r	m A	5 r	mA	3 mA		
V DPU (17 (=7	NOMINAL (Ω)	+10% ⁽³⁾ (Ω)	NOMINAL (Ω)	+10% ⁽³⁾ (Ω)	NOMINAL (Ω)	+10% ⁽³⁾ (Ω)	
5 V	581	639	930	1023	1550	1705	
3.3 V	369	406	590	649	983	1082	
2.5 V	269	296	430	473	717	788	
1.8 V	181	199	290	319	483	532	
1.5 V	144	158	230	253	383	422	
1.2 V	106	117	170	187	283	312	

- (1) Calculated for V_{OL} = 0.35 V
- (2) Assumes output driver $V_{OL} = 0.175 \text{ V}$ at stated current
- (3) +10% to compensate for V_{DD} range and resistor tolerance

Copyright © 2022 Texas Instruments Incorporated

Submit Document Feedback

9.2.1.2.3 LSF0108-Q1 Bandwidth

The maximum frequency of the LSF0108-Q1 is dependent on the application. The device can operate at speeds of >100 MHz given the correct conditions. The maximum frequency is dependent upon the loading of the application. The LSF0108-Q1 behaves like a standard switch where the bandwidth of the device is dictated by the on resistance and on capacitance of the device.

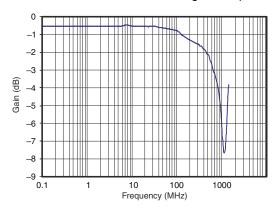


图 9-3. 3-dB Bandwidth

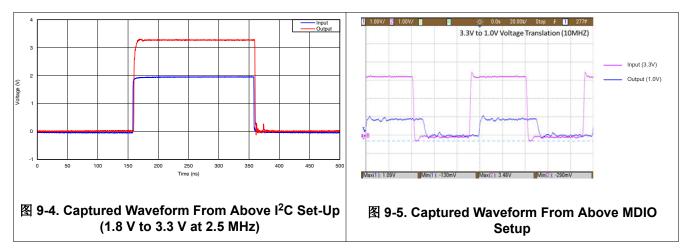
The 3-dB point of the LSF0108-Q1 is ≅ 600 MHz; however, this measurement is an analog type of measurement. For digital applications the signal should not degrade up to the fifth harmonic of the digital signal. The frequency bandwidth should be at least five times the maximum digital clock rate. This component of the signal is very important in determining the overall shape of the digital signal. In the case of the LSF0108-Q1, a digital clock frequency of greater than 100 MHz can be achieved.

The LSF0108-Q1 does not provide any drive capability. Therefore higher frequency applications will require higher drive strength from the host side. No pull-up resistor is needed on the host side (3.3 V) if the LSF0108-Q1 is being driven by standard CMOS totem pole output driver. Ideally, it is best to minimize the trace length from the LSF0108-Q1 on the sink side (1.8 V) to minimize signal degradation.

All fast edges have an infinite spectrum of frequency components; however, there is an inflection (or knee) in the frequency spectrum of fast edges where frequency components higher than $f_{\rm knee}$ are insignificant in determining the shape of the signal.

To calculate the maximum practical frequency component, or the knee frequency (f_{knee}), use 方程式 4 and 方程式 5:

$$f_{knee} = \frac{0.5}{RT (10 - 80\%)} \tag{4}$$


$$f_{knee} = \frac{0.4}{RT (20 - 80\%)} \tag{5}$$

For signals with rise time characteristics based on 10% to 90% thresholds, f_{knee} is equal to 0.5 divided by the rise time of the signal. For signals with rise time characteristics based on 20% to 80% thresholds, which is very common in many of today's device specifications, f_{knee} is equal to 0.4 divided by the rise time of the signal.

Some guidelines to follow that will help maximize the performance of the device:

- Keep trace length to a minimum by placing the LSF0108-Q1 close to the I²C output of the processor.
- The trace length should be less than half the time of flight to reduce ringing and line reflections or non-monotonic behavior in the switching region.
- To reduce overshoots, a pull-up resistor can be added on the 1.8 V side; be aware that a slower fall time is to be expected.

9.2.1.3 Application Curves

9.2.2 Mixed-Mode Voltage Translation

The supply voltage ($V_{pu\#}$) for each channel can be individually set with a pull-up resistor. \boxtimes 9-6 shows an example of this mixed-mode multi-voltage translation. For additional details on multi-voltage translation, see the *Multi-voltage Translation with the LSF Family* video.

With the Vref_B pulled up to 5 V and Vref_A connected to 1.8 V, all channels will be clamped to 1.8 V at which point a pullup can be used to define the high level voltage for a given channel.

- Push-Pull Down Translation (5 V to 1.8 V): Channel 1 is an example of this setup. When B1 is 5 V, A1 is clamped to 1.8 V, and when B1 is LOW, A1 is driven LOW through the switch.
- Push-Pull Up Translation (1.8 V to 5 V): Channel 2 is an example of this setup. When A2 is 1.8 V, the switch is high impedance and the B2 channel is pulled up to 5 V. When A2 is LOW, B2 is driven LOW through the switch.
- Push-Pull Down Translation (3.3 V to 1.8 V): Channels 3 and 4 are examples of this setup. When either B3 or B4 are driven to 3.3 V, A3 or A4 are clamped to 1.8 V, and when either B3 or B4 are LOW, A3 or A4 are driven LOW through the switch.
- Open-Drain Bidirectional Translation (3.3 V ↔ 1.8 V): Channels 5 through 8 are examples of this setup. These channels are for bidirectional operation for I²C and MDIO to translate between 1.8 V and 3.3 V with open-drain drivers.

Copyright © 2022 Texas Instruments Incorporated

Submit Document Feedback

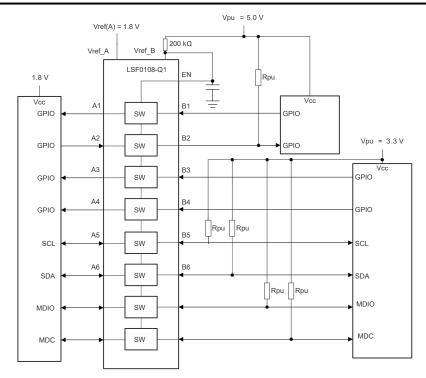


图 9-6. Multi-Voltage Translation with the LSF0108-Q1

9.2.2.1 Single Supply Translation

Sometimes, an external device will have an unknown voltage that could be above or below the desired translation voltage, preventing a normal connection of the LSF. Resistors are added on the A side in place of the second supply in this case – this is an example of when LSF single supply operation is utilized, shown in Figure 9-5. In the following figure, a single 3.3 V supply is used to translate between a 3.3 V device and a device that can change between 1.8 V and 5.0 V. R1 and R2 are added in place of the second supply. Note that due to some current coming out of the Vref_A pin, this cannot be treated as a simple voltage divider.

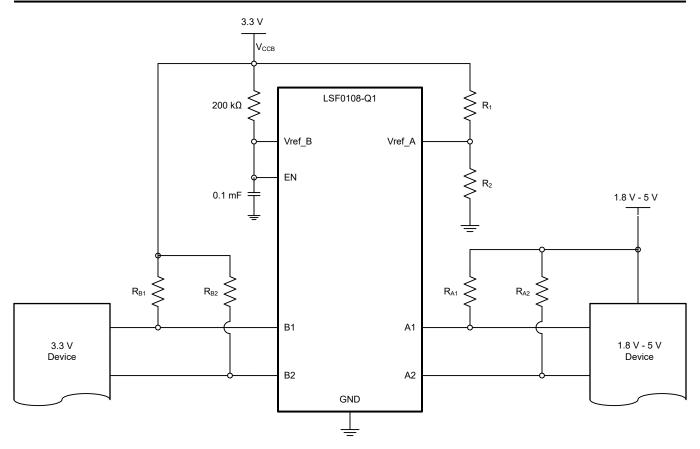


图 9-7. Single Supply Translation with 3.3 V Supply

The steps to select the resistor values for R1 and R2 are as follows:

- 1. Select a value for R1. Typically, 1 $M\Omega$ is used to reduce current consumption.
- 2. Plug in values for your system into the the following equation. Note that Vref_A is the lowest voltage in the system. VCCB is the primary supply and R1 is the selected value from step 1.

$$R_2 = \frac{200(10^3) \times R_1 \times V_{REFA}}{(200(10^3) + R_1)(V_{CCB} - V_{REFA}) - 0.85 \times R_1}$$
(6)

The single supply used must be at least 0.8 V larger than the lowest desired translation voltage. The voltage at Vref_A must be selected as the lowest voltage to be used in the system. The LSF evaluation module (LSF-EVM) contains unpopulated pads to place R1 and R2 for single supply operation testing. For an example single supply translation schematic and details, see the *Single Supply Translation with the LSF Family* video.

9.2.2.2 Voltage Translation for Vref B < Vref A + 0.8 V

As described in $\frac{1}{8}$ 9-2, it is generally recommended that Vref_B > Vref_A + 0.8 V; however, the device can still operate in the condition where Vref_B < Vref_A + 0.8 V as long as additional considerations are made for the design.

Typical Operation (Vref_B > Vref_A + 0.8 V): in this scenario, pullup resistors are not required on the A-side for proper down-translation as is shown for channels 1 and 2 of ⊠ 9-6. The typical operating mode of the device ensures that when down translating from B to A, the A-side I/O ports will clamp at Vref_A to provide proper voltage translation. For further explanation of device operation, see the *Down Translation with the LSF Family* video.

Requirements for Vref_B < Vref_A + 0.8 V Operation: in this scenario, there is not a large enough voltage difference between Vref_A and Vref_B to ensure that the A side I/O ports will be clamped at Vref_A, but rather at a voltage approximately equal to Vref_B - 0.8 V. For example, if Vref_B = 1.8 V and Vref_A = 1.2 V, the A-side I/Os will clamp to a voltage around 1.0 V. Therefore, to operate in such a condition, the following additional design considerations must be met:

- Vref_B must be greater than Vref_A during operation (Vref_B > Vref_A)
- Pullup resistors should be populated on A-side I/O ports to ensure the line will be fully pulled up to the desired voltage

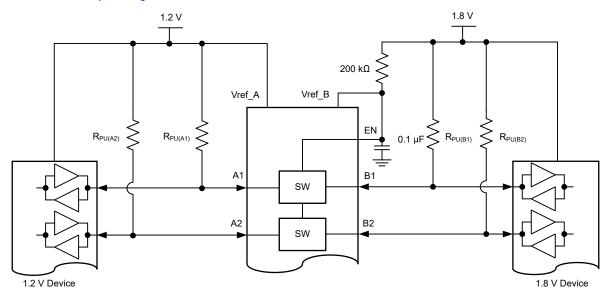


图 9-8. 1.2 V to 1.8 V Level Translation with LSF0108-Q1

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

10 Power Supply Recommendations

There are no power sequence requirements for the LSF0108-Q1. For enable and reference voltage guidelines, refer to #9.2.1.1.1.

11 Layout

11.1 Layout Guidelines

Because the LSF0108-Q1 is a switch-type level translator, the signal integrity is highly related with a pull-up resistor and PCB capacitance condition.

- · Short signal trace as possible to reduce capacitance and minimize stub from pull-up resistor.
- · Place LSF close to high voltage side.
- Select the appropriate pull-up resistor that applies to translation levels and driving capability of transmitter.

11.2 Layout Example

LSF0108-Q1

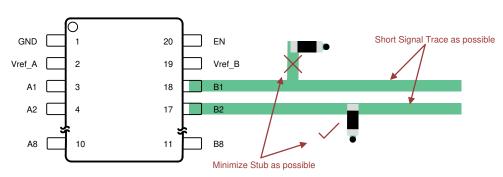


图 11-1. Short Trace Layout

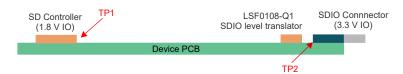


图 11-2. Device Placement

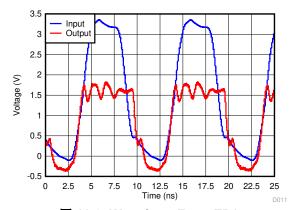


图 11-3. Waveform From TP1 (Pull-Up Resistor: 160- Ω and 50-pF Capacitance 3.3 V to 1.8 V at 100 MHz)

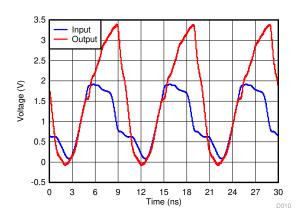


图 11-4. Waveform From TP2 (Pull-Up Resistor: 160- Ω and 50-pF Capacitance 1.8 V to 3.3 V at 100 MHz)

12 Device and Documentation Support

12.1 接收文档更新通知

要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击*订阅更新* 进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

12.2 支持资源

TI E2E™ 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题可获得所需的快速设计帮助。

链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的《使用条款》。

12.3 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

所有商标均为其各自所有者的财产。

12.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.5 术语表

TI术语表本术语表列出并解释了术语、首字母缩略词和定义。

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most-current data available for the designated device. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, see the left-hand navigation pane.

Product Folder Links: LSF0108-Q1

Submit Document Feedback

www.ti.com 15-Nov-2022

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LSF0108QPWRQ1	ACTIVE	TSSOP	PW	20	2000	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 125	LSF0108Q	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

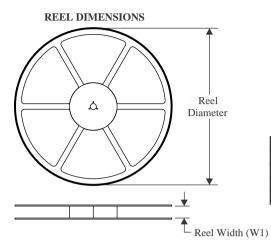
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

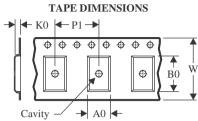
OTHER QUALIFIED VERSIONS OF LSF0108-Q1:

PACKAGE OPTION ADDENDUM

www.ti.com 15-Nov-2022

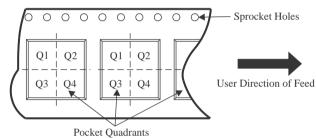
● Catalog : LSF0108


NOTE: Qualified Version Definitions:

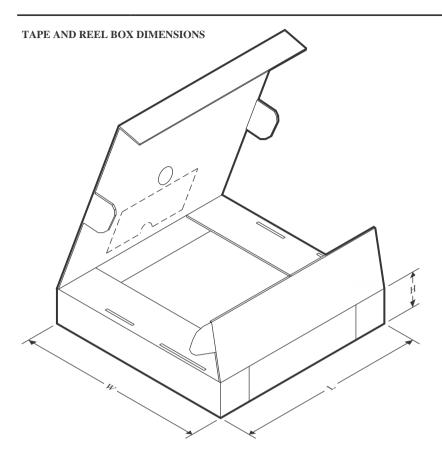

• Catalog - TI's standard catalog product

PACKAGE MATERIALS INFORMATION

www.ti.com 15-Nov-2022


TAPE AND REEL INFORMATION

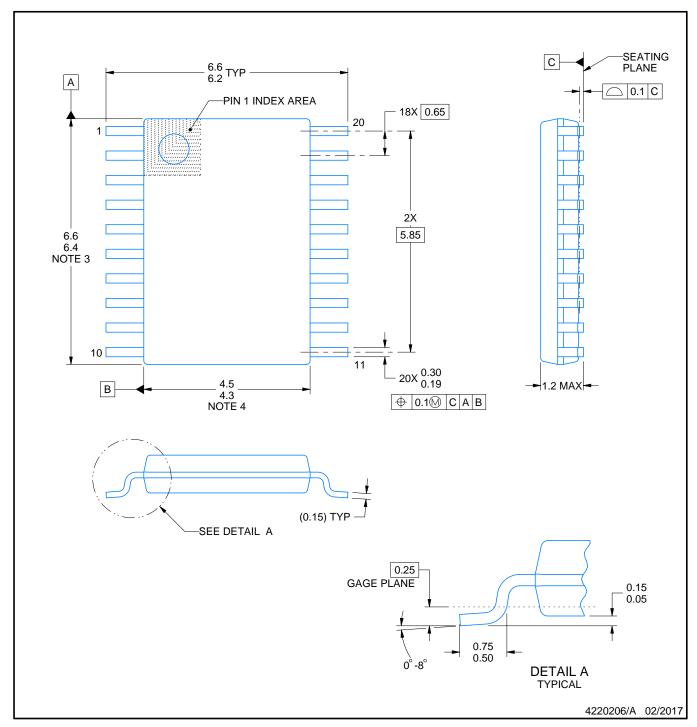
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LSF0108QPWRQ1	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1

www.ti.com 15-Nov-2022

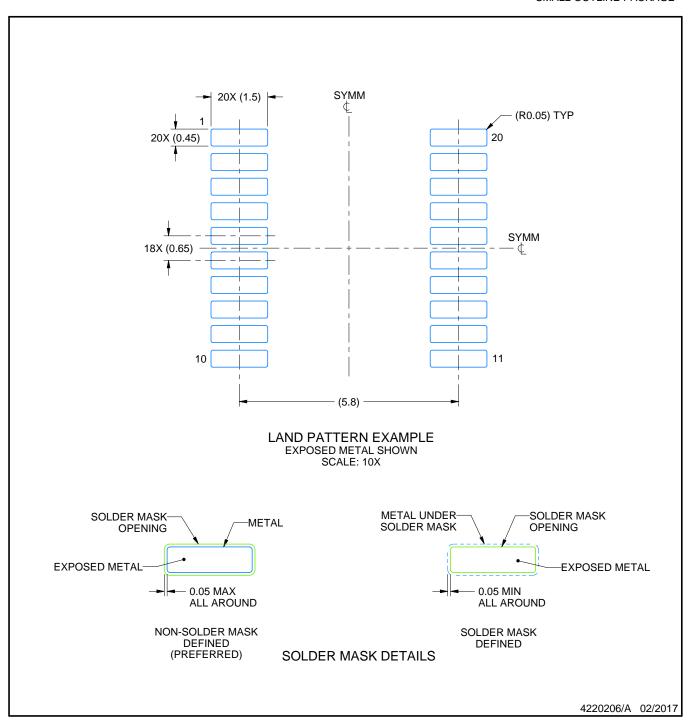


*All dimensions are nominal

	Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
I	LSF0108QPWRQ1	TSSOP	PW	20	2000	364.0	364.0	27.0

SMALL OUTLINE PACKAGE

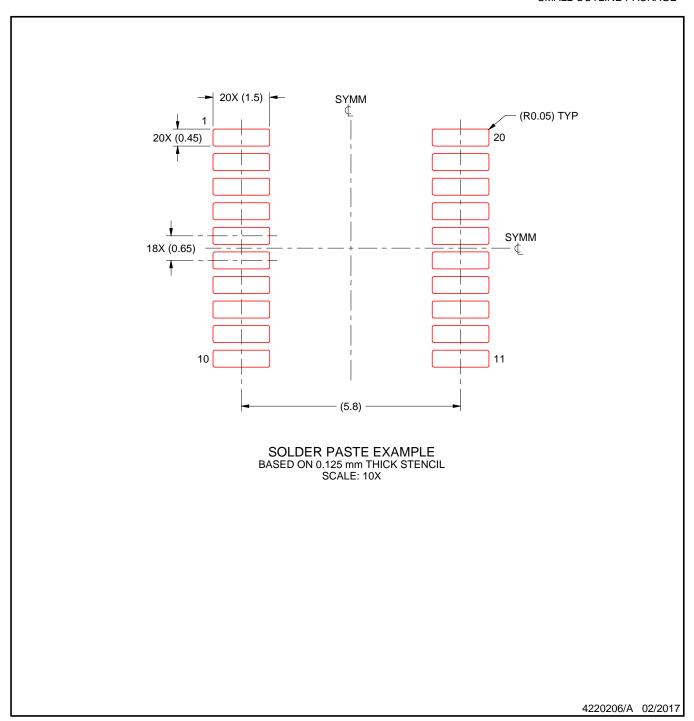
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

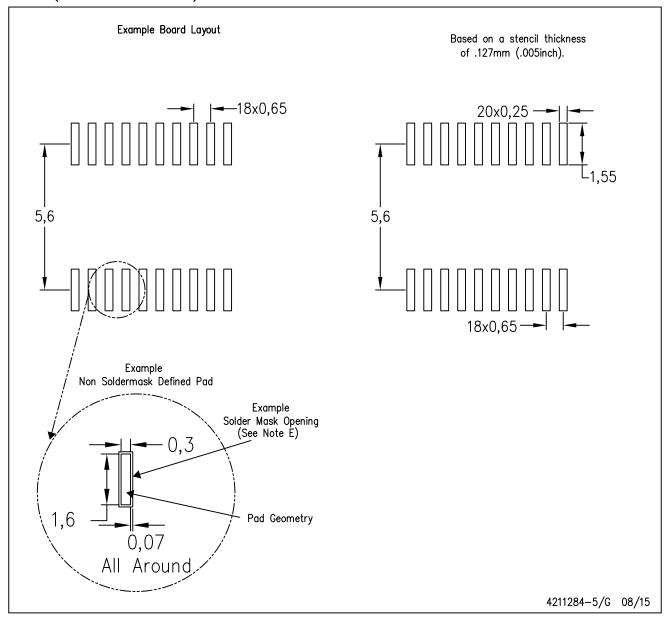
SMALL OUTLINE PACKAGE


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE


NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

PW (R-PDSO-G20)

PLASTIC SMALL OUTLINE

NOTES:

- All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
 C. Publication IPC-7351 is recommended for alternate design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022,德州仪器 (TI) 公司